1. Para um concurso
militar, o número de vagas para homens correspondia a 80% do número de vagas
para mulheres. Dada a grande procura de candidatos, decidiu-se ampliar o número de vagas, sendo
30 novas vagas para homens e 15 para mulheres. Após a mudança, o número total
de vagas para homens passou a ser 84% do número total de vagas para mulheres.
Com isso, o total de vagas para ambos os sexos passou a ser :
(A) 276
(B) 552
(C) 828
(D) 1 104
Vejamos :
Como as vagas para homens são iguais a 80% das vagas para mulheres,
então se o número de vagas para mulheres for igual a x, o número de
vagas para homens será 0,8x.
Dada a grande procura.... → Homens = 0,8x + 30 e Mulheres = x + 15
... Após a mudança, o número total de vagas para homens passou a ser
84% do número total de vagas para mulheres...→0,8x + 30 = 84% de x + 15
0,8x + 30 = 0,84.(x + 15) →0,8x + 30 = 0,84x + 12,6 →30 – 12,6 = 0,84x – 0,8x
17,4 = 0,4x → x = 17,4/0,04 → x = 435
Total de vagas, Homens + Mulheres = 0,8x + 30 + x + 15 = 1,8x + 45 =
1,8.435 + 45 = 783 + 45 = 828
2. Dois pilotos
treinam em uma pista de corrida. Um deles fica em uma faixa interna da pista e
uma volta completa nessa faixa possui 2,4 km de comprimento; o outro fica em
uma faixa mais externa cuja volta completa tem
2,7 km. O piloto que possui o carro mais rápido está na faixa interna e
a cada volta que ele completa o outro piloto percorre 2 km. Se os pilotos
iniciaram o treino sobre a marca de largada da pista, a próxima vez em que eles
se encontrarão sobre essa marca, o piloto com o carro mais lento terá
percorrido, em km, uma distância igual a :
(A) 40,5
(B) 54,0
(C) 64,8
(D) 72,9
Vejamos :
Se a cada volta do mais rápido, o mais lento percorre 2 de 2,7 de uma
volta, então em x voltas percorridas pelo mais rápido o mais lento
percorrerá 2x/2,7 = 20x/27 = (20/27)x.
Como x é um número inteiro, múltiplo de 27, para a próxima vez em que
eles se encontrarão deverá ser 27.
Finalmente 27 voltas de 2 km equivalem a 54 km.
3. A função f tem
lei de formação f(x) = 3 – x e a função g tem lei de formação g(x) = 3x2
. Um esboço do gráfico da função f(g(x)) é dado por
Vejamos :
Se f(x) = 3 – x e g(x) = 3x2,
então f(g(x)) = 3 – 3x2.
Seu gráfico será uma parábola com concavidade voltada para baixo,
cortando o eixo y em (0, 3) e o eixo x em (-1, 0) e (1, 0), portanto a
resposta será a letra A.
4. Um patrão tem 6
tarefas diferentes para serem distribuídas entre 3 empregados. Ele pode delegar
todas elas a um só empregado, ou delegar apenas para alguns, ou ainda garantir
que cada empregado receba pelo menos uma tarefa. O número de maneiras distintas
de distribuir essas tarefas é :
(A) 639
(B) 714
(C) 729
(D)
864
Vejamos :
Como ele pode delegar todas as tarefas a um só empregado, ou delegar
apenas para alguns, ou ainda garantir que cada empregado receba pelo
menos uma tarefa, então cada tarefa pode ser distribuída para os 3
empregados, ou seja : 3 . 3 . 3 . 3 . 3 .3 = 36 = 729
5. Uma matriz B
possui i linhas e j colunas e seus elementos são obtidos a partir da expressão
bij = i – 2j. Seja uma matriz A = (a ij ) 2x3 cujos elementos da
primeira coluna são nulos e I2 a matriz identidade de ordem 2, tal 2
que AB = I2 . O valor numérico do maior elemento da matriz A é igual
a :
(A) 0
(B) 1
(C) 2
(D) 3
Vejamos :
Se AB = I2 e A é do tipo 2x3, então B deverá ser do tipo 3x2, pois
A(2x3).B(3x2) = I(2x2).
Resolvendo os sistemas, vem : y =
1 e -2x – y = 0 → x = -y/2 → x = -1/2
t = 0 e -2z – t = 1 → -2z = 1 + t → z = (-1-t)/2 → z = - 1/2
Finalmente o maior elemento da matriz A é 1.
6. Os pontos B e F
são extremidades da circunferência de equação x2 + y2 =
81 e o segmento DE é tangente à circunferência dada no ponto C(0, 9).
No trapézio BDEF o
ângulo F mede 120º e o ângulo B mede 150º, conforme mostra a figura. A área do
trapézio BDEF vale :
(A) 27 (3 √ 3 – 1)
(B) 54 (2 √ 3 – 1)
(C) 27 (2 √ 3 + 3)
(D) 54 ( √3 + 3)
Vejamos :
Como a equação da circunferência é x2
+ y2 = 81, então seu raio mede 9.
Se traçarmos duas paralelas ao eixo y, nos pontos F e B, iremos observar
dois triângulos retângulos .
Como tg 300 = EG/GF → √3/3 = EG/9
→ EG = 3√3
Como tg 600 = HD/HB → √3 = HD/9 → HD = 9√3
Finalmente, a área do trapézio = (base maior + base menor).altura/2
A = (ED + FB).AC/2 = [(12√3 + 18) + 18].9/2 = (12√3 + 36).9/2 = 54(√3 + 3)
7. Em uma aula de
geometria, o professor passou a seguinte instrução: Desenhe um retângulo de
lados 8 cm por 14 cm. Nomeie os vértices desse retângulo de A, B, C e D, sendo
que AB deve ser um dos menores lados. Determine o ponto médio do lado AB e
nomeie esse ponto pela letra M. A partir do ponto M trace um segmento paralelo
aos lados maiores e que tenha 3 cm de comprimento. Nomeie esse segmento de MN.
Determine a área do triângulo NCD. Natália e Mariana seguiram as instruções
dadas, porém chegaram a resultados diferentes. Se o professor considerou
correta as duas resoluções, a diferença, em cm2 , entre as áreas
obtidas por Natália a Mariana foi :
(A) 16
(B) 20
(C) 24
(D) 28
Vejamos :
Area 1 = (8 . 11)/2 = 44 cm2 e Area
2 = (8 . 17)/2 = 68 cm2 , portanto a
diferença será : Area 2 - Area 1
= 68 – 44 = 24 cm2
8. Adriana e
Beatriz precisam produzir 240 peças. Juntas elas levarão um tempo T, em horas,
para produzir essas peças. Se Adriana trabalhar sozinha, ela levará (T + 4h)
para produzir as peças. Beatriz, sozinha, levará (T + 9h) para realizar o
serviço. Supondo que cada uma delas trabalhe em ritmo constante, o número de
peças que Adriana produz a mais do que Beatriz, a cada hora, é igual a :
(A) 6
(B) 8
(C) 9
(D) 10
Vejamos :
Adriana e Beatriz : Se 240 peças em T horas, entao x peças em 1 hora →
x = 240.1/T → x = 240/T
Adriana : Se 240 em (T + 4) horas, entao y peças em 1 hora →
y = 240 . 1/(T + 4) → y = 240/(T + 4)
Beatriz : Se 240 em (T + 9) horas, entao z peças em 1 hora →
z = 240 . 1/(T + 9) → z = 240/(T + 9)
Portanto em 1 hora → x = y + z → 240/T = 240/(T + 4) + 240/(T + 9) →
1/T = 1/(T + 4) + 1/(T + 9) → (T + 4).(T + 9) = T(T + 9) + T(T + 4) →
T2 + 9T + 4T + 36 = T2 + 9T + T2 + 4T → T2 = 36 → T = 6 horas
Qual o número de peças que Adriana produz a mais do que Beatriz, a cada hora ?
Adriana = 240/(6 + 4) = 24 e Beatriz = 240/(6 + 9) = 16.
Finalmente Adriana produz, 24 – 16 = 8 peças a mais de Beatriz.
9. Para a feira
cultural da escola, um grupo de alunos irá construir uma pirâmide reta de base
quadrada. A pirâmide terá 3 m de altura e cada aresta da base medirá 2 m. A
lateral da pirâmide será coberta com folhas quadradas de papel, que poderão ser
cortadas para um melhor acabamento. Se a medida do lado de cada folha é igual a
20 cm, o número mínimo dessas folhas necessárias à execução do trabalho será :
(utilize √10 = 3,2 )
(A) 285
(B) 301
(C) 320
(D) 333
Vejamos :
Segundo a figura podemos afirmar que : h =
3m ; a = 2m ; ap = 1m →
Ap2 = 32 + 12→Ap= √10 m = 3,2m
Área lateral = 4.a.Ap/2 = 4.2.3,2/2 = 12,8 m2
Área de cada folha de papel = 0,2.0,2 = 0,04 m2
Número de folhas = Área lateral / Área de cada folha = 12,8/0,04 = 320
10. Um polinômio de
quinto grau tem 2 como uma raiz de multiplicidade 3. A razão entre o
coeficiente do termo de quarto grau e o coeficiente do termo de quinto grau é
igual a –7. A razão entre o termo independente e o coeficiente do termo de
quinto grau é igual a 96. A menor raiz desse polinômio vale :
(A) 0
(B) –1
(C) –2
(D) –3
Vejamos :
... Um polinômio de quinto grau tem 2 como uma raiz de multiplicidade 3.
P(x) = ax5 + bx4 + cx3 + dx2 + ex + f onde x' = x'' = x''' = 2
... A razão entre o coeficiente do termo de quarto grau e o coeficiente do termo de
quinto grau é igual a –7 → b/a = - 7
... A razão entre o termo independente e o coeficiente do termo de quinto grau é
igual a 96 → f/a = 96
Segundo as relações de Girard :
Soma da raízes = - b/a → x' + x'' + x''' + x'''' + x''''' = 7 → 2 + 2 + 2 + α + β = 7
6 + α + β = 7 → α + β = 1
Produto da raízes = - f/a → x' . x'' . x''' . x'''' . x''''' = - 96 → 2.2.2.α.β = -96
8.α.β = - 96→ α.β = - 12
Resolvendo o sistema, vem α.β = - 12 → (1 - β).β = - 12 → β – β2 = - 12
β2 – β – 12 = 0 → β = (1 ± 7)/2 → β' = 4 ou β'' = - 3 → α' = -3 ou α'' = 4
Finalmente a menor raíz é - 3
estou com dificuldade só pra entender essa ultima questão.
ResponderExcluirbrabão
ResponderExcluir